The SVM Classifier Based on the Modified Particle Swarm Optimization

نویسندگان

  • L. A. Demidova
  • E. V. Nikulchev
  • Yu. Sokolova
چکیده

The problem of development of the SVM classifier based on the modified particle swarm optimization has been considered. This algorithm carries out the simultaneous search of the kernel function type, values of the kernel function parameters and value of the regularization parameter for the SVM classifier. Such SVM classifier provides the high quality of data classification. The idea of particles' «regeneration» is put on the basis of the modified particle swarm optimization algorithm. At the realization of this idea, some particles change their kernel function type to the one which corresponds to the particle with the best value of the classification accuracy. The offered particle swarm optimization algorithm allows reducing the time expenditures for development of the SVM classifier. The results of experimental studies confirm the efficiency of this algorithm. Keywords—particle swarm optimization; SVM-classifier; kernel function type; kernel function parameters; regularization parameter; support vectors

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Big Data Classification Using the SVM Classifiers with the Modified Particle Swarm Optimization

The problem with development of the support vector machine (SVM) classifiers using modified particle swarm optimization (PSO) algorithm and their ensembles has been considered. Solving this problem would allow fulfilling the highprecision data classification, especially Big Data classification, with the acceptable time expenditures. The modified PSO algorithm conducts a simultaneous search of t...

متن کامل

Spectral and Wavelet-based Feature Selection with Particle Swarm Optimization for Hyperspectral Classification

Spectral band selection is a fundamental problem in hyperspectral classification. This paper addresses the problem of band selection for hyperspectral remote sensing image and SVM parameter optimization. First, we propose an evolutionary classification system based on particle swarm optimization (PSO) to improve the generalization performance of the SVM classifier. For this purpose, we have opt...

متن کامل

S3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization

Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...

متن کامل

Feature Selection and Parameters Optimization of SVM Using Particle Swarm Optimization for Fault Classification in Power Distribution Systems

Fast and accurate fault classification is essential to power system operations. In this paper, in order to classify electrical faults in radial distribution systems, a particle swarm optimization (PSO) based support vector machine (SVM) classifier has been proposed. The proposed PSO based SVM classifier is able to select appropriate input features and optimize SVM parameters to increase classif...

متن کامل

Power Supply Quality Analysis Using S-Transform and SVM Classifier

In this paper, a SVM classifier based on S-Transform is presented for power quality disturbances classification. Firstly, seven types of PQ events are created using Matlab simulation. These signals are analyzed to detect and localize PQ events via S-Transform by visual inspection. Then five significant features of the PQ disturbances are extracted from the S-Transform output. Afterwards, PQ dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1603.08296  شماره 

صفحات  -

تاریخ انتشار 2016